Bertrand ’ s postulate and subgroup growth

نویسنده

  • D. B. McReynolds
چکیده

In this article we investigate the L1–norm of certain functions on groups called divisibility functions. Using these functions, their connection to residual finiteness, and integration theory on profinite groups, we define the residual average of a finitely generated group. One of the main results in this article is the finiteness of residual averages on finitely generated linear groups. Whether or not the residual average is finite depends on growth rates of indices of finite index subgroups. Our results on index growth rates are analogous to results on gaps between primes, and provide a variant of the subgroup growth function, which may be of independent interest. keywords: Bertrand’s postulate, residual finiteness, subgroup growth MSC code: 20E07, 20E18

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Bertrand Curves in semi-Euclidean space E4^2 and their Characterizations

In [14] Matsuda and Yorozu.explained that there is no special Bertrand curves in Eⁿ and they new kind of Bertrand curves called (1,3)-type Bertrand curves Euclidean space. In this paper , by using the similar methods given by Matsuda and Yorozu [14], we obtain that bitorsion of the quaternionic curve is not equal to zero in semi-Euclidean space E4^2. Obtain (N,B2) type quaternionic Bertrand cur...

متن کامل

Bertrand’s Paradox Revisited: More Lessons about that Ambiguous Word, Random

The Bertrand paradox question is: “Consider a unit-radius circle for which the length of a side of an inscribed equilateral triangle equals 3 . Determine the probability that the length of a ‘random’ chord of a unit-radius circle has length greater than 3 .” Bertrand derived three different ‘correct’ answers, the correctness depending on interpretation of the word, random. Here we employ geomet...

متن کامل

Ramanujan's Proof of Bertrand's Postulate

We present Ramanujan’s proof of Bertrand’s postulate and in the process, eliminate his use of Stirling’s formula. The revised proof is elegant and elementary so as to be accessible to a wider audience.

متن کامل

On $Phi$-$tau$-quasinormal subgroups of finite groups

‎Let $tau$ be a subgroup functor and $H$ a $p$-subgroup of a finite group $G$‎. ‎Let $bar{G}=G/H_{G}$ and $bar{H}=H/H_{G}$‎. ‎We say that $H$ is $Phi$-$tau$-quasinormal in $G$ if for some $S$-quasinormal subgroup $bar{T}$ of $bar{G}$ and some $tau$-subgroup $bar{S}$ of $bar{G}$ contained in $bar{H}$‎, ‎$bar{H}bar{T}$ is $S$-quasinormal in $bar{G}$ and $bar{H}capbar{T}leq bar{S}Phi(bar{H})$‎. ‎I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009